发布日期:2018-08-06 08:37:32
研究人员使用计算机对网络进行训练,通过学习每个物体在该物体发出的光线穿过设备时产生的衍射光图案来识别其前面的物体。 “训练”使用了一种称为深度学习的人工智能分支,其中机器通过重复和随着时间的推移“学习”模式出现。“使用逐层制造的无源元件,并通过光衍射将这些层相互连接,创造了一个独特的全光平台,以光速执行机器学习任务。”Ozcan博士说。
在他们的实验中,研究人员证明该装置可以准确识别手写的数字和衣物,这两种都是人工智能研究中常用的测试。它还可以在太赫兹光谱上执行成像镜头的功能。加州大学洛杉矶分校的研究人员认为,基于该设备的新技术可用于加速涉及排序和识别物体的数据密集型任务。例如,使用该技术的无人驾驶汽车可以立即做出反应,甚至比使用现有技术更快,对停车标志做出反应。使用基于UCLA系统的设备,一旦来自标志的光击中它,汽车将“读取”标志,而不是必须“等待”汽车的相机对物体成像然后使用其计算机来找出对象是什么。基于本发明的技术还可以用于显微成像和医学,例如,用于分选数百万个细胞以寻找疾病的迹象。
Ozcan研究组/加州大学洛杉矶分校由于其组件可以由3D打印机创建,因此人工神经网络可以用更大和更多的层制作,从而产生具有数亿个人造神经元的设备。那些更大的设备可以同时识别更多的对象或执行更复杂的数据分析。并且组件可以廉价制作, 由加州大学洛杉矶分校团队创建的设备可以低于50美元。
中国3D打印网译自:3ders.org